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bstract

Some chemical plants such as plug-flow tubular reactors have highly nonlinear behavior. Such processes demand a powerful identification
ethod such as a neural-networks-based Wiener model. In this paper, a plug-flow reactor is simulated in a rather realistic environment by HYSYS,

nd the obtained data is in connection with MATLAB for identification and control purpose. The process is identified with NN-based Wiener
dentification method, and two linear and nonlinear model predictive controllers are applied with the ability of rejecting slowly varying unmeasured
isturbances. The results are also compared with a common PI controller for temperature control of tubular reactor. Simulation results show that the
btained Wiener model has a good capability to predict the step response of the process. Parameters of both linear and nonlinear model predictive

ontrollers are tuned and the best-obtained results are compared. For this purpose, different operating points are selected to have a wide range of
peration for the nonlinear process. It is shown that the nonlinear controller has the fastest damped response in comparison with the other two
ontrollers.

2007 Elsevier B.V. All rights reserved.
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. Introduction

There are very few design techniques that can be proved
o stabilize processes in the presence of nonlinearities and
onstraints. Model predictive control (MPC) – a model-based
ptimal control method – has been one of the successful con-
rollers in manufacturing industries for the past two decades
1]. MPC refers to a class of computer control algorithms that
ontrol the future behavior of a plant through the use of an
xplicit process model. At each control interval, the MPC algo-
ithm computes an open-loop sequence of manipulated variable
djustments in order to optimize future plant behavior. The first
nput in the optimal sequence is injected into the plant, and the
ntire optimization is repeated at subsequent control intervals
1]. By now, the application of MPC controllers based on lin-
ar dynamic models cover a wide range of applications, and

inear MPC theory can be considered quite mature. Neverthe-
ess, many manufacturing processes are inherently nonlinear and
here are cases where nonlinear effects are significant and can-
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ot be ignored. These include at least two broad categories of
pplications [1]:

. Regulator control problems where the process is highly non-
linear and subject to large frequent disturbances (pH control,
etc.).

. Servo control problems where the operating points change
frequently and span a wide range of nonlinear process dynam-
ics (polymer manufacturing, ammonia synthesis, etc.).

In fact higher product quality specifications and increasing
roductivity demands, tighter environmental regulations and
emanding economical considerations require to operate sys-
ems over a wide range of operating conditions and often near
he boundary of the admissible region [2]. Besides, the oper-
ting point in some batch processes is not in steady-state and
ll of the operations are performed in transient conditions [3].
nder these conditions linear models are often not sufficient to
escribe the process dynamics adequately and nonlinear models

ust be used.
In recent years, several nonlinear model predictive control

NMPC) techniques from identification as well as control points
f view are addressed for different processes in literatures.

mailto:mmarefi@ee.iust.ac.ir
dx.doi.org/10.1016/j.cej.2007.05.044
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as follows:

x(k + 1) = Ax(k) + Bu(k), z(k) = Cx(k) + Du(k),

y(k) = f (z(k)) + v(k) (1)
M.M. Arefi et al. / Chemical Eng

mong these techniques, neural networks play important role
specially in the identification phase of NMPC algorithms due
o their ability to learn by example [4–10]. Moreover, they also
ave the ability to learn the frequently complex dynamic behav-
or of a physical system. For an overall review on the application
f neural networks in the control of chemical processes, the inter-
sted readers may refer to [11]. For example in Ref. [5], neural
etworks are used to develop a model for highly nonlinear CSTR
nd pH neutralization processes. A nonlinear internal model
ontroller is designed based on these models and results are com-
ared with a PID controller. In Ref. [6], an RBF neural network
s used for modeling and control of an unstable CSTR process.
he use of neural network for modeling of a CSTR process has
lso been reported in Ref. [7], where the controller is designed
sing classical optimization methods. The main problem with
eural network as a model is that it performs well in the range
f the data used for training the network, but has poor extrap-
lation property in other regions. To cope with this problem,
ynamic nonlinear models are proposed [4,8]. The use of Wiener
odels where a linear dynamic model is followed by a static

onlinearity is one of the solutions. Several NMPC methods for
H neutralization and CSTR processes using Wiener model is
ddressed in [12–14]. For example in Refs. [12,13], a static non-
inear term is used to model the inverse of the nonlinearity of
he plant and is selected as a polynomial with proper degree.
esides, in Ref. [14], the nonlinear term and its inverse are
odeled using piecewise linear method. In Ref. [15], a nonlin-

ar combination of Laguerre models followed by a single-layer
eural network is introduced as an efficient nonlinear identifi-
ation method used in MPC applications. The capability of this
echnique is showed by the identification of some highly non-
inear plants including pH and CSTR. In Ref. [16], a MIMO

iener model of a polymerization reactor is identified and the
odel is used in an MPC scheme. The quality of proposed con-

roller is also compared with that of linear MPC. This algorithm
s based on the PI-MOESP method for the estimation of system

atrices of the linear part [17]. In Ref. [18], a distillation col-
mn simulation model is used as a benchmark to demonstrate
he benefits of a Wiener model based identification and control

ethodology. The results show the capability of this technique
n identifying nonlinear ill-conditioned plant compared to exist-
ng linear techniques. Despite the fact that many manufacturing
ystems are nonlinear, however they have been controlled by
IDs. However, because of the tuning and robustness difficulties
f PID controllers as reported in Refs. [19,20], a more reli-
ble controller based on nonlinear model of the process may be
eeded.

In this paper, a nonlinear model predictive control is pro-
osed based on classic optimization methods with nonlinear
dentification using Wiener model for a highly nonlinear plug-
ow tabular reactor. Because of the capability of Wiener model
tructure in comparison with Hammerstein models in capturing
omplex nonlinear dynamics, a Wiener structure with a state-

pace model in linear part and neural networks in nonlinear part
s selected. Both these parts are parameterized and an overall
ptimization is performed on the parameters based on collected
ata. This Wiener structure and identification technique is dif-
ng Journal 138 (2008) 274–282 275

erent from those reported in the literature [e.g. 12–18]. The
esults of identification and control are also compared with lin-
ar MPC and classical PI controller to show the superiority of
he proposed method. In addition, to have more realistic simu-
ations, the model of process is simulated in HYSYS, and the
ata is transferred (real-time) to MATLAB for identification and
ontrol purposes. After this introduction, the theory of Wiener
dentification using neural network as the static nonlinear term
s presented. Also selection of the test signal to achieve the
est result for identification is studied. In Section 3, the design
f nonlinear model predictive control based on the identified
iener model is presented. Simulation results for identification

nd control of plug-flow tubular reactor are given in Section 4.

. NN-based Wiener identification

.1. Wiener identification

Among the nonlinear black box models, the block-oriented
odels are efficient structures in nonlinear modeling. These
odels consist of a series connection of a linear dynamic element

nd a static nonlinear element.
A Wiener model consists of a dynamic linear block (H1) in

ascade with a static nonlinearity at the output (H2), as shown
n Fig. 1. Here z(k) ∈ Rl is an intermediate signal that does not
ecessarily have a physical meaning. On the other hand, in the
ammerstein model the static input nonlinearity precedes the

inear block.
In certain respects, Hammerstein models are very similar

o the linear models on which they are based. For example, if
(k) is a piecewise constant input sequence [e.g. pulses, steps,
seudo-random binary sequences (PRBS), etc.], for any static
onlinearity the intermediate variable sequence will also be a
iecewise constant sequence with the same general character
specifically, with transitions at the same instants as u(k), but
ssuming different values). Hammerstein models have been con-
idered as alternatives to linear models in a number of chemical
rocess applications [21].

In particular, while Hammerstein and Wiener models exhibit
xactly the same steady state behavior, the differences in their
ransient responses can be quite significant. As a specific exam-
le, the general character of the step response can change with
he sign and/or magnitude of the input step, unlike the case of the
ammerstein model, where this general character is determined

ntirely by the linear part [21]. Because of this behavior and the
apability of modeling complex nonlinear dynamics by Wiener
odels led us to the selection of this model structure.
State-space representation of a Wiener model can be stated
Fig. 1. The Wiener model.
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here x(k) is the n × 1 state vector at time k, u(k) the m × 1
ector of control input, y(k) the l × 1 vector of measured output,
nd v(k) is a measurement noise assumed to be zero-mean and
ndependent of u(k)for all k’s. The system matrices A, B, C and

are real with proper dimensions and f(·) is a nonlinear vector
unction defined on Rl → Rl. The sequences of input and output
ata used for identification of (1) are available. Besides, it is
ssumed that the input sequences {u(k)} are persistently exciting
22] and statistically independent of noise sequences {v(k)}. The
ystematic approach for identification of the above problem is
tated completely in Ref. [23]. The first step is identification of
inear part using state-space methods. So assuming the nonlinear

apping as an identity, the linear dynamics characterized by
uadruple (A, B, C and D) will be identified. Then using the
dentified matrices (A, B, C and D), the output sequences of this
TI system {ẑ(k)}Nk=1 will be computed. With this sequence, a
rimary identification of the nonlinear part of the Wiener model
an be estimated. Here, this static nonlinear term is identified
sing a single layer neural network with the following structure:

s(z(k)) =
υ∑

i=1

⎛
⎝α(s, i)φ

⎛
⎝ l∑

j=1

β(s, i, j)zj(k) + b(s, i)

⎞
⎠

⎞
⎠

+ b(s, υ + 1) + εs(k) (2)

here fs(·) and zs(k) are used to characterize the sth input and
utput of the nonlinear term. Besides, α(s, i), β(s, i, j), b(s, i) and
(s, υ + 1) are unknown real coefficients stacked in the parame-
er vector � ∈ Rl((l+2)υ+1) and must be estimated using nonlinear
east square methods. υ is the number of neurons in the hidden
ayer and the last term ε(k) shows the estimation error. The cost
unction minimized for estimation of � is:

in
�

N∑
k=1

∥∥∥∥∥∥∥∥∥∥∥∥

y1(k) −
υ∑

i=1

⎛
⎝α(1, i)φ

⎛
⎝ l∑

j=1

β(1, i, j)ẑj(k) + b(1, i)

⎞
⎠

yl(k) −
υ∑

i=1

⎛
⎝α(l, i)φ

⎛
⎝ l∑

j=1

β(l, i, j)ẑj(k) + b(l, i)

⎞
⎠

⎞
⎠

Finally, the best parameters for the linear and nonlinear parts
re identified with an optimization algorithm. For this purpose,
he system matrices identified for the linear part and the param-
ter vector estimated for the nonlinear part are used as initial
onditions for the calculation of the final parameters. Despite
he parameter vector defined for the nonlinear part, a full param-
terization of the Wiener model in (1) requires that the system
atrices (A, B, C and D) and also the vector of initial condi-

ions x(1) be included in the parameter vector. To have minimum
arameters for the matrices, the pair (A and C) must be trans-
ormed with similar transformations to what is called an output
ormal form.

efinition. The pair (A and C) of the system matrices (A, B,

and D) is in output normal form if ATA + CTC = In, where

n ∈ Rn×n is an identity matrix. The above definition explicitly
hows that matrix A must be asymptotically stable. In order
or the state space description of the system to be unique, the

T
e
a
f

ng Journal 138 (2008) 274–282

b(1, υ + 1)

b(l, υ + 1)

∥∥∥∥∥∥∥∥∥∥∥∥

2

(3)

atrices A and C are transformed such that

[
C

A

]
be lower

riangular with positive elements in the diagonal. After these
ransformations, the parameterization can be performed using
l parameters. More details about this method of parameter-
zation can be found in Refs. [24,25]. All parameters of the
ystem matrices after this parameterization are stacked in the
ector �on. The estimation of all parameters of the parameterized
iener system can be obtained by minimizing this performance

ndex:

min
(1),�on,�

=
N∑

k=1

‖y(k) − ŷ(k, x(1), �on, �)‖
2

(4)

here N is the number of samples used for identification.
o obtain all parameters of the system, the above least
quare minimization must be solved. The method used here is
evenberg–Marquardt which tries to find the local minima of the
erformance index iteratively. If � is the vector of all param-
ters, by defining e(�) = y − ŷ(�), where e(�) is the error
etween the target and output vector, the parameters of (�) can
e updated in each iteration. Suppose the value of these param-
ters at iteration t of Levenberg–Marquardt algorithm is shown
y �(t), then this algorithm can be stated as follows:

(t + 1) = �(t) + ��(t) (5)

here �� is obtained by solving this set of nonlinear equations:

JT(t)J(t) + μI)�� = −JTe(�(t)) (6)

nd J(t) is the Jacobian matrix with these derivatives:

ij:=∂ŷi(�(t))

∂�j

, i = 1 : N, j = 1 : length (�). (7)

The tuning parameter μ ∈ (0,∞) is called the Levenberg fac-
or and is necessary for convergence of the algorithm.

Although normalized gradient descent method has the fastest
onvergence response among gradient descent techniques, but
ts convergence speed is lower than that of Newton method [26].
ecause of the computational complexity of Newton methods,
evenberg–Marquardt takes the advantages of Newton method
ith lower computation [26]. By setting μ to zero, the fast

onvergence of Gauss–Newton iteration for small residual prob-
ems is achieved. If μ is too small, the algorithm may diverge.

he choice of μ in an adaptive manner will have some ben-
fits. For big values of μ, the convergence is very slow. The
lgorithm tries to keep μ as small as possible. If the cost
unction decreases, the current step is accepted, and the ratio
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f the actual decrease compared to the predicted decrease is
hecked. Then μ is decreased if the ratio was acceptable and
ncreased otherwise. If the cost function increases, the step
s rejected and calculations are repeated with an increased μ

26].
The derivatives in (7) are calculated analytically for the

onlinear part, and are approximated using forward difference
ethod for the linear part [25]. All identification procedures are

erformed using SLICOT toolbox [25].

.2. Test design

Some important factors which must be considered in design-
ng the identification test for nonlinear systems are: the duration
f the test signal, its amplitude and shape, its spectrum (the
verage switching time), the correlation of the test signal in
ach channel, and the number of manipulated variables in each
est.

Traditionally, pseudo-random binary sequences (PRBS) are
sed as the inputs to a system in order to produce represen-
ative sets of data to be analyzed. In theory, a PRBS excites
he range of dynamics present in a system so that a dynamic

odel can be produced which contains these dynamics. This
s not sufficient, however, for fitting a Wiener model. Since
hese models have nonlinear gains, an input signal must be
sed which also demonstrates the response of the system to a
ange of amplitude changes. A signal that satisfies these crite-
ia is a GMN [27] or a modified PRBS signal [13] which, in
ddition to random frequency, also exhibits random amplitude
hanges.

Since in nonlinear systems the test time depends mainly on
he number of parameters in the model and the level of noise
nd unmeasured disturbances, longer test time is recommended
n comparison with linear systems. This is typically considered
bout 16–25 times the settling time of the process. Other factors
ay be included by choosing one of the following excitation

ignals [27]:

I. Staircase test. In this type of test, the width of the pulses
and their numbers must be selected properly.

II. Generalized multiple-level noise (GMN). This type of test is
a multi-level extension of generalized binary noise. In this

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢

CB D 0

CAB CB D
...

...
...

CAM−1B CAM−2B CAM−3B

β = ⎢⎢⎢⎢⎢⎢⎢⎢⎣

CAMB CAM−1B CAM−2B C
...

...
...

CAP−1B CAP−2B CAP−3B C
Fig. 2. The Wiener model for NMPC.

test the amplitude and the number of pulses must be selected
suitably. The number of levels on this test is equal or greater
than the degree of the nonlinear polynomial to be identified.
Moreover, the average switching time of the test can be
obtained from Tsw = T/3, where T is 98% of the process
settling time.

II. Filtered white uniform noise. The flexibility in shaping the
spectrum of this type of signal is its main advantage. Each
spectrum may be realized with a proper filter. A first order
low-pass filter is often suitable for this purpose.

. Nonlinear model predictive controller

If at time k, the future state and behavior of the plant is
ssumed to be known, they can be written in vector form in
IMO case as follows:

(k) = [ zT(k + 1) zT(k + 2) · · · zT(k + P) ]
T

(8)

(k) = [ uT(k + 1) uT(k + 2) · · · uT(k + M) ]
T

(9)

(k) = [ yT(k + 1) yT(k + 2) · · · yT(k + P) ]
T

(10)

(k) = [ rT(k + 1) rT(k + 2) · · · rT(k + P) ]
T

(11)

here z(k) is the vector of the linear model outputs, u(k) the
ector of manipulating variables, y(k) the vector of the Wiener
odel outputs shown in Fig. 2, and r(k) is the vector consisting

et points.
Also M and P are the control and prediction horizons, respec-

ively. The predicted output of the linear model can be written
s

ˆ(k) = βū(k) + ξx(k) (12)

here β, ξ and ū(k) are defined by

0 · · · 0

0 · · · 0
...

. . .
...

AM−4B · · · D

AM−3B · · · D + CB
...

. . .
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

(13)
AP−4B · · · D +
P∑

i=M+1

CAP−iB

⎥⎥⎦
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CA

CA2

...

CAM

CAM+1

...

CAP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

¯ (k) = [ uT(k) uT(k) ]
T

(15)

Besides, the predicted output of the Wiener model is given
y

ˆ(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f (ẑ(k + 1))

f (ẑ(k + 2))

f (ẑ(k + 3))
...

f (ẑ(k + P))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= f (ẑ(k)) (16)

Finally, by solving and minimizing the following optimiza-
ion problem the control signal applied to the process can be
btained:

min J
(k+1),u(k+2),...,u(k+M)

=
P∑

j=1

‖ŷ(k + j) − r(k)‖2
Q +

M∑
j=1

‖�u(k + j)‖2
S

+
M∑

j=1

‖u(k + j)‖2
R (17)

here

u(k + j) = u(k + j) − u(k + j − 1) (18)

In (17), Q and S are the weighting matrices for the output
nd rate of change of the control input and R is the weighting
atrix for manipulated variable. In addition, it is assumed that:

(k + j) = u(k + M) j = M + 1 . . . P (19)

In this optimization problem the eligible limits for the control
nput and its rate of change, and also those for the output signal

ay be considered with these inequalities:

umin ≤ u(k) ≤ umax ∀k

dumin ≤ u(k) − u(k − 1) ≤ dumax ∀k

ymin ≤ y(k) ≤ ymax ∀k

(20)

The optimization problem stated above can be solved with
uccessive Quadratic Programming (SQP) method. It is impor-

ant to notice that the optimization time must be less than the

ampling time of the process so that the obtained control signal
an be applied to the process.

To compensate the eventual mismatch between the process
nd its model, and in order to consider unmeasured disturbances

R

R

ng Journal 138 (2008) 274–282

n the process, a term must be added to the predicted output of
he plant [7], like:

(k) = y(k) − ym(k) (21)

here y(k) is the output of the real process, and ym(k) is the
odel output. The modified predicted output will be:

pred(k + i) = ym(k + i) + d(k) for i = 1, . . . , P (22)

. Simulation results

.1. Identification results

Reactors are the heart of many chemical processes, and
ynamic simulation of these critical units is absolutely essen-
ial for the safe and profitable operation of the entire plant [28].
here are a tremendous number of different types of reactors

hat are used commercially. Reactors in which exothermic, irre-
ersible reactions take place are the most challenging because
f the potential for temperature runaways. The chemical and
etroleum industries have experienced a number of devastating
res, explosions and emissions of toxic material during the last
entury caused by chemical reactors. Many of these could have
een prevented by better design and operation. Therefore, reac-
or dynamics and control are probably the most vital parts of
ynamic simulations [28].

Many industrial processes use tubular reactors, particularly
hose in which a solid catalyst is required. The typical tubular
eactor has a vessel that is packed with solid catalyst. The impor-
ant difference between CSTR reactors and tubular reactors is
he distributed nature of latter: temperature and composition vary
own the length of the tubular reactors, and they also vary with
ime. This makes the models and the dynamics more complex.

The case study considered in this paper is the chlorination
f propylene. The model of the process is simulated numeri-
ally with HYSYS 3.1 software, and its nominal parameters are
elected based on the data given in Ref. [28]. For control pur-
ose, HYSYS is connected to MATLAB 7.1 using HYSYSLIB
oolbox with some modifications [29] to have more access to the
esired variables.

The process contains two parallel gas phase reactions. The
rst forms allyl chloride and HCL:

3H6 + Cl2 → CH2 = CH-CH2Cl + HCl (23)

nd the second forms 1,2-dichoro propane:

3H6 + Cl2 → CH2Cl-CHCl-CH3 (24)

Reaction rates have a first-order dependence on the par-
ial pressure of the reactants. Using English units in HYSYS,
he reaction rates are given in lb mol/h ft3, with temperature in
ankin, activation energy in Btu/lb mol, and pressure in atmo-

pheres:
1 = k1PC3PCl2 = (2.06 × 105 e−27,200/RT )PC3PCl2 (25)

2 = k2PC3PCl2 = (11.7 e−6860/RT )PC3PCl2 (26)
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actual process and the identified model are shown in Fig. 8. It
can be seen that the fitting of the Wiener model is very good for
both cases.
Fig. 3. Schematic representation o

If reactor is operated adiabatically, the temperature of the gas
eaving the reactor is predicted by HYSYS to be 716 ◦F, and
he chlorine concentration is 9.89 mol% (50% conversion). Sev-
ral cases are considered in this section with varying types and
mounts of heat transfer. In these cases the outlet temperatures
re different, as are the conversions of chlorine. A control valve
n the gas feeding the reactor is designed for a 20 psi drop when
0% open at design flow rate. A flow controller manipulates
his valve to control feed flow. A valve on the exit line from
he reactor is used to hold pressure in the reactor. This valve is
esigned for a 10 psi pressure drop when 50% open at design
ow rate. In this paper, the use of tubular reactor without catalyst

s considered.
In Ref. [28], two methodologies for temperature control of

eactor are proposed. The first case uses the direct Q model, and
he second case, available in HYSYS and used here, is one in
hich a coolant is used.
The aim is to control the temperature of the output liquid of

he reactor (TR3out) by manipulating the coolant flow (Q3). The
ominal parameters of output temperature and cooling fluid flow
ate are 272.4 ◦C and 0.5882 kg mol/h, respectively. The process
s schematically depicted in Fig. 3.

Moreover, the feed flow of v5out is considered as the unmea-
ured disturbance of the process. In order to have a more realistic
imulation of plug-flow reactor and to be able to tune the control
arameters reliably for real applications, the important parame-
ers to specify the heat-transfer information are given in Table 1;
hese must be known in advance.

The remaining parameters are calculated from those speci-
ed. Note that the temperature level of the cooling fluid is too
igh to use cooling water. A high temperature fluid, such as
owTherm, would be used to cool this reactor. Fig. 4 shows the

pen-loop response of the process for ±20% step change in flow
3. It can be seen that the process is highly nonlinear and the

teady-state gain for −20% changes is about 25% greater than
hat for +20%.

able 1
eat-transfer and coolant flow information of plug-flow reactor

imulation parameters Nominal value

eat capacity of the coolant 75.00 kJ/kg mol-C
nlet temperature of cooling fluid 204.4 ◦C
vailable UA 149.08 kJ/C-h
tility holdup 0.5126 kg mol
ole flow (cooling flow rate) 0.4429 kg mol/h
in flow (cooling flow rate) 0 kg mol/h
ax flow (cooling flow rate) 1.361 kg mol/h F

t

plug-flow tubular reactor process.

To identify this process, a GMN signal at eight levels: 0, 0.3,
.5882, 0.7, 0.9, 1.1, 1.2 and 1.361 is generated in MATLAB
s the excitation signal. The average switching time between
hese levels is selected as 20 samples. This signal is applied as
he input signal to the process modeled in HYSYS. Input and
utput data are gathered with sampling time of 1 min, and 2000
amples are used for identification purpose. Fig. 5 shows the
nput (coolant flow) and output (outlet reactor temperature) data
ollected for identification of the process.

The identification has been performed using the above-
entioned Wiener model with four neurons in the hidden layer.
To get a better view of how to select the number of hidden

eurons, the steady state nonlinear gain of the process simulated
n HYSYS is plotted Fig. 6. The nonlinear gain of the Wiener-
eural model is also calculated and plotted in the same figure for
omparison. The result for three, four and five hidden neurons
s shown in this figure. It can be seen that the four-neuron model
ill result in the best match especially for low input amplitude.
he obtained models are used in an NMPC scheme and the mean
bsolute error (MAE) of the controlled variable is calculated.
hese results also confirm that a four-neuron Wiener model is

he best choice.
One thousand and five hundred samples of data are selected

or identification, and the rest are used for validation of the
btained model. The validation of the identified model is shown
n Fig. 7. To have a better validation, the step responses of the
ig. 4. Open-loop step-response of the plug-flow tubular reactor for changes in
he coolant flow.
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Fig. 5. GMN input and output signals fo

Fig. 6. Nonlinear steady state gain of Wiener model for different hidden layer
neurons.

Fig. 7. Validation results for the identified NN-based Wiener model.
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r identification of tubular reactor.

.2. Control results

Setpoint tracking behavior of the regulator (closed-loop) sys-
em with NMPC, along with the coolant flow signal is shown
n Fig. 9. It can be seen that the response shows a good track-
ng speed and low overshoot for all operating points. Also the
ontrol signal has a reasonable amplitude and rate of change
ith respect to constraints applied for optimization. Besides, the

omparison of this result with linear MPC and PI controllers is
hown in Fig. 9. It can be seen that the results approve the higher
erformance of the NMPC for different operating conditions,
specially when it is far from the point where the linear model is
dentified. The prediction and control horizons are tuned by trial
nd error at 10 and 5, respectively. The weighting matrices are

elected as Q = 1300, S = 150 and R = 1000. Also a lower limit
f 0 kg mol/h and an upper limit of 1.361 kg mol/h are chosen
or imposing saturation constraints for the manipulated variable,
nd the corresponding values for rate of change of manipulated

ig. 8. Step response of the Wiener model for changes in the coolant flow.
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Fig. 9. Up: the performance of NMPC when tracking set-point in tubular reactor; down: the corresponding inlet coolant flow.

Table 2
Different criteria for applied controllers in set-point tracking

Criteria Controller

NMPC MPC PI

MAE 1.2031 1.3544 1.9712
SAE 721.8633 812.6548 1182.7
M
S

v
f
s
l

n
i
i

SE 18.3394 20.0719 19.5969
SE 11,004 12,043 11,758

ariable are ±0.2 kg mol/h. In Table 2, different criteria for dif-
erent controllers are compared. As can be seen, the NMPC
hows better performance compared to the other two contro-
lers.
The computation time required for generating the control sig-
al in the NMPC simulation is shown in Fig. 10. As can be seen
n this figure, the maximum computation time for optimization
s 0.5108 s which is sufficiently below the chosen sampling time

Fig. 10. Computation time of the CPU for SQP optimization.
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ig. 11. The performance of the NMPC controller in rejecting unmeasured
isturbance.

f 1 min for the process. The SQP optimization is performed
sing the fmincon function of MATLAB.

The performance of different controllers in rejecting +20%
hanges in the feed flow as the unmeasured disturbance is shown
n Fig. 11. These results show the capability of the proposed
MPC controller in rejecting unmeasured disturbances.

. Conclusions

In this paper, a nonlinear model predictive control for a
ubular reactor process is simulated. This process has strong non-
inearity and wide range of operating points. These properties

ake the linear MPC techniques unsuitable and hence demand

more complex identification and controller design procedure.
he process is simulated in a realistic environment with HYSYS

or gathering required data, and is connected with MATALB for
dentification and control purposes.
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A Wiener model is chosen with neural network as the static
onlinear term. Simulation results from the identification phase
pprove the validation of the identified model. Besides, the step
esponses of the plant and the identified model are in good
greement. This shows the ability of this type of model struc-
ure for modeling such a highly nonlinear process. Simulation
f the NMPC in HYSYS for a wide range of operating points
hows superior performance of the NMPC compared to the lin-
ar MPC and PI controllers. This is especially true when the
perating condition of process is far from the point where the
odel for linear MPC is identified. Results show that in such

onditions the linear MPC and PI controllers fail to follow the
et point adequately, while the nonlinear MPC exhibits a desir-
ble fast response with smoother changes in the control effort.
imulations also confirm that the designed controllers have the
apability to reject slowly varying unmeasured disturbances
hich are common happens in chemical processes.
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